Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters








Language
Year range
1.
Malaysian Journal of Microbiology ; : 11-21, 2023.
Article in English | WPRIM | ID: wpr-988516

ABSTRACT

Aims@#This study was designed to examine the enzyme activity of selected virulent isolates of Ganoderma boninense against oil palm. In a separate in vitro assessment, the effect of macronutrients on the mycelial growth of four selected Ganoderma spp. was also tested.@*Methodology and results@#The study involved a comparison of ligninolytic enzymes; lignin peroxidase (LiP), manganese peroxidase (MnP) and laccase (Lac) profiling of eight isolates of G. boninense, categorized into three levels of aggressiveness, with two control isolates (G. boninense PER71 and G. tornatum NPG1) using solid-state fermentation (SSF). The Principal Component Analysis (PCA) revealed that the isolates had a significant production of ligninolytic enzymes on day 80. The most aggressive isolate, ET61 had the highest Lac production. As for the macronutrient test, mycelial growth for all the Ganoderma spp. was highly affected by potassium (K).@*Conclusion, significance and impact of study@#The findings of this study elucidated the characteristics of G. boninense in relation to enzyme production for the degradation of oil palm lignin and the identification of essential nutrients involved in the survival and growth of Ganoderma spp. The study provides vital information on the pathogenic characteristics of G. boninense isolates involved in biomass degradation along with the role of nutrient on the growth of Ganoderma spp. that may influence basal stem rot (BSR) management in the field.


Subject(s)
Enzymes , Ganoderma , Palm Oil
2.
Malaysian Journal of Microbiology ; : 331-337, 2022.
Article in English | WPRIM | ID: wpr-979317

ABSTRACT

Aims@#The basal stem rot disease in oil palm is caused by the pathogenic Ganoderma boninense, which is infectious after mating and forming dikaryotic hyphae. This study was aimed to generate a mating-type biomarker for the detection of pathogenic Ganoderma species.@*Methodology and results@#Mating-type region of Ganoderma was amplified using polymerase chain reaction (PCR) and primers flanking the mating-type region of other basidiomycetes. Amplified fragments were sequenced and were identified as the Ganoderma pheromone receptor gene of matB locus called the gprb2 gene. Using this biomarker, the pheromone receptor gene was detected in a total of 107 pathogenic Ganoderma spp. while the gene was not detected in the non-pathogenic Ganoderma lucidum. Phylogenetic tree analyses of the gene fragment encoding the partial amino acid sequence of gprb2 showed clades of close evolutionary relationship among the 107 pathogenic Ganoderma spp. Phylogenetic analyses using deduced amino acid sequences of the Ganoderma pheromone receptor b2 gene, gprb2 with homologous pheromone receptors of other basidiomycetous fungi revealed high conservation of this pheromone receptor within their respective taxonomy.@*Conclusion, significance and impact of study@#A potential mating-type biomarker was successfully identified that could detect pathogenic Ganoderma spp. The research findings will be helpful in oil palm screening to detect pathogenic Ganoderma spp. and gain further insight into the role of the mating-type loci of Ganoderma towards its pathogenesis in causing the basal stem rot disease of oil palm.


Subject(s)
Genes, Mating Type, Fungal , Ganoderma
3.
Malaysian Journal of Microbiology ; : 1-10, 2021.
Article in English | WPRIM | ID: wpr-969310

ABSTRACT

Aims@#The development of an effective biocontrol formulation for inhibition of Ganoderma boninense, a well-known destructive pathogen in oil palm plantation is important to prolong the palm’s lifespan and reduce the losses due to this disease. In this paper, we present some new bioformulations with combination of different types of biocontrol agents in managing basal stem rot (BSR) disease. @*Methodology@#The effectiveness of the treatments designed as T1 (Trichoderma harzianum + Lecanicillium spp. + Streptomyces sundarbansensis + Pseudomonas aeruginosa), T2 (Penicillium simplicissimum + Lecanicillium sp. + S. sundarbansensis + P. aeruginosa), T3 (P. simplicissimum + P. aeruginosa) and T4 (LEStani®) was evaluated through treatment on the oil palm seedlings artificial infected by G. boninense and the results were expressed in disease severity index (DSI), bole severity index (BSI) and ergosterol content.@*Conclusion, significance and impact of study@#All tested treatments (T1-T4) managed to control the severity of the Ganoderma infection from continuously increasing when the treatments were applied either one month before or after artificial inoculation. The disease severity of infected seedlings without treatments had increased for almost 2-fold at the end of the trial. Moreover, T1 had the greatest inhibition of G. boninense with the lowest ergosterol content (a bioindicator of Ganoderma colonization) detected (676.67 g/mL), which is about 1.9-fold lower than control (1273.33 ug/mL) without treatments and a BSI score of 1. Based on the effectiveness among the four tested biocontrol formulations, T1 is the most promising formulation to be further evaluated in the field for control of BSR disease. However, more research is needed in the future to estimate the effective amount for application in open environment.


Subject(s)
Palm Oil , Biological Control Agents , Ganoderma
4.
Malaysian Journal of Microbiology ; : 103-110, 2019.
Article in English | WPRIM | ID: wpr-780675

ABSTRACT

Aims@#The objective of this study is to investigate the potential of fungi isolated from forest soil as biocontrol against Ganoderma boninense, the causal pathogen of basal stem rot disease in Elaeis guineensis Jacq. (oil palm). @*Methodology and results@#Total 195 isolates were isolated from 20 soil samples collected from Crocker Range of Sabah and 54 fungal isolates were identified with 14 of them showed Percentage Inhibition of Radial Growth (PIRG) greater than 50%. A potential fungi (F15) with PIRG of 84.85% was later identified as Penicillium simplicissimum using molecular technique. Microscopy examination on P. simplicissimum and G. boninense interaction showed the evidence on the damage of pathogen hyphae when challenged by P. simplicissimum. The secondary metabolites of P. simplicissimum which may possibly contribute to this observation were later extracted using hexane, ethyl acetate and acetone and the extracts were tested in agar dilution bioassay (0.2 mg/mL to 1.0 mg/mL) against the pathogen. Ethyl acetate extract gave the highest inhibition to G. boninense (14.12 % in 0.4 mg/mL of ethyl acetate extract). @*Conclusion, significance and impact of study@#This is the first report, on the bioactivity of P. simplicissimum isolated from Crocker Range of Sabah against Ganoderma boninense, the causal pathogen of basal stem rot disease. Overall, our results indicated that P. simplicissimum has the potential to be further investigated as a biocontrol agent against G. boninense.

5.
Mycobiology ; : 339-342, 2010.
Article in English | WPRIM | ID: wpr-729257

ABSTRACT

Basal stem rot symptoms were found on blueberry seedlings imported from the United States of America in 2008. The fungus obtained from the diseased seedlings was identified as Calonectria colhounii based on morphological and molecular characteristics. The consignments of the blueberry seedlings infected with C. colhounii were destroyed to prevent introduction of the fungus to Korea.


Subject(s)
Americas , Blueberry Plants , Fungi , Korea , Seedlings , United States
SELECTION OF CITATIONS
SEARCH DETAIL